Tuesday, May 1, 2012

From Poison to Cure


Deadly Nightshade
Atropine is a tropane alkaloid extracted from deadly nightshade, jimsonweed (Datura stramonium), mandrake and other plants of the family Solanaceae. Injections of atropine are used in the treatment of bradycardia (an extremely low heart rate), asystole and pulseless electrical activity (PEA) in cardiac arrest. Atropine’s actions on the parasympathetic nervous system inhibits salivary, sweat, and mucus glands. This
can be useful in treating hyperhidrosis, and can prevent the death rattle of dying patients. Because of its extremely important use in medicine, this poison is a core medicine in the World Health Organization’s “Essential Drugs List”, which is a list of minimum medical needs for a basic health care system.

Yellow Scorpion Venom
The venom from another menacing arachnid is being used to help treat cancer. Researchers at the Transmolecular Corporation in Cambridge, Mass., have isolated a protein that occurs in the venom of the Israeli yellow scorpion. This protein has been shown to seek out and bind itself to the types of cancerous cells found in gliomas, a type of brain cancer that’s particularly difficult to treat. The researchers created a synthetic version of the protein and attached radioactive iodine solution to it. When introduced into the bloodstream, the protein seeks out glioma cells and binds to them, carrying the radioactive solution along for the ride. The solution then destroys the cells — and with enough treatments, the cancer.

 Chilean Rose Tarantula Venom
Biophysicists from the University at Buffalo are using a protein from the venom of the Chilean Rose tarantula to combat death from heart attacks. The walls of your cells have tiny channels that open when the cell stretches. Among other body functions, these channels are responsible for the contraction of heart muscles. When these channels open too wide (which can happen from stretching the heart muscles over time), they allow a flood of positive ions into the cell. These extra ions disrupt the electrical signals in the heart, causing the organ to fibrillate (beat wildly and irregularly). The protein from the Chilean tarantula venom binds to these channels, which can block the positive ions from passing through. This could ostensibly prevent fibrillation — and hopefully death — if delivered during a heart attack.

Ergot
Man has a long history with ergot – a fungus which infects rye (which is then transferred to humans who eat the grain). Ergotism causes hallucinations and attendant irrational behavior, convulsions, and even death. Other symptoms include strong uterine contractions, nausea, seizures, and unconsciousness. Consumption can lead to amputation of limbs which are damaged by the fungus. Since the middle ages, controlled doses of ergot were used to induce abortions and to stop maternal bleeding after childbirth. Ergot alkaloids are used in products such as Cafergot (containing caffeine and ergotamine or ergoline) to treat migraine headaches. It is also used in a variety of treatments for Parkinson’s disease.

 Hemlock
Hemlock is one of the most widely known poisons. The most important and toxic alkaloid in hemlock is coniine, which has a chemical structure similar to nicotine. Coniine is a neurotoxin, which disrupts the workings of the central nervous system and is toxic to humans and all classes of livestock. Coniine causes death by blocking the neuromuscular junction in a manner similar to curare; this results in an ascending muscular paralysis with eventual paralysis of the respiratory muscles which results in death due to lack of oxygen to the heart and brain. Death can easily be prevented by artificial ventilation until the effects have worn off 48–72 hours later. Ingestion of Poison Hemlock in any quantity can result in respiratory collapse and death. For an adult the ingestion of more than 100 mg of coniine (approximately 6 to 8 fresh leaves, or a smaller dose of the seeds or root) may result in fatality. Despite its deadly reputation, poison hemlock has been used as a sedative and for its antispasmodic properties. It was also used by Greek and Persian physicians for a variety of problems, such as arthritis.

No comments:

Post a Comment